‘Magic’ Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

نویسندگان

  • Metod Saniga
  • Michel Planat
  • Petr Pracna
  • Péter Lévay
چکیده

Metod Saniga, Michel Planat, Petr Pracna and Péter Lévay Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatranská Lomnica, Slovak Republic ([email protected]) 2 Institut FEMTO-ST, CNRS, 32 Avenue de l’Observatoire F-25044 Besançon, France ([email protected]) J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Doleǰskova 3, CZ-18223 Prague 8, Czech Republic ([email protected]) Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary ([email protected])

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinguished three-qubit 'magicity' via automorphisms of the split Cayley hexagon

Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12 096 distinct copies of Mermin’s magic pentagram. Remarkably, 12 096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of cert...

متن کامل

The Veldkamp Space of the Smallest Slim Dense Near Hexagon

We give a detailed description of the Veldkamp space of the smallest slim dense near hexagon. This space is isomorphic to PG(7, 2) and its 2 − 1 = 255 Veldkamp points (that is, geometric hyperplanes of the near hexagon) fall into five distinct classes, each of which is uniquely characterized by the number of points/lines as well as by a sequence of the cardinalities of points of given orders an...

متن کامل

Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black Holes

Abstract The set of 63 real generalized Pauli matrices of three-qubits can be factored into two subsets of 35 symmetric and 28 antisymmetric elements. This splitting is shown to be completely embodied in the properties of the Fano plane; the elements of the former set being in a bijective correspondence with the 7 points, 7 lines and 21 flags, whereas those of the latter set having their counte...

متن کامل

The smallest split Cayley hexagon has two symplectic embeddings

It is well known that the smallest split Cayley generalized hexagon H(2) can be embedded into the symplectic space W (5, 2), or equivalently, into the parabolic quadric Q(6, 2). We establish a second way to embed H(2) into the same space and describe a computer proof of the fact that these are essentially the only two embeddings of this type.

متن کامل

Coverings of the smallest Paige loop

By investigating the construction of the split Cayley generalized hexagon, H(2), we get that there do not exist five distinct hexagon lines each a distance two apart from each other. From this we prove that the smallest Paige loop has a covering number of seven and that its automorphism group permutes these coverings transitively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012